数据带扭曲测量误差条件下乘积回归模型统计分析

时间:2021-10-18 11:30:20  来源:网友投稿

 摘

 要

 在对带有测量误差的数据进行回归建模时,如果直接分析观测到的数据,忽略测量误差,那么估计结果往往是有偏甚至不相合的。因此,对于这类问题,我们要用相应的测量误差模型来处理。测量误差模型主要有两种:第一种是具有可加结构的一些测量误差模型;第二种是具有相乘结构的一些测量误差模型,我们称之为扭曲测量误差模型。在本文中,我们主要讨论数据带扭曲测量误差条件下的乘积回归模型。

 本文研究数据带扭曲测量误差条件下乘积回归模型的估计和假设检验问题。通过理论和模拟研究,讨论了估计量的估计效果。我们考虑了当响应变量和协变量都不能直接观测到,但被一个可观测的混淆变量的未知函数所扭曲时,乘积线性回归模型的估计。在对响应变量进行对数变换后,提出了一种参数估计方法,即最小二乘估计。另一种是无对数变换的最小乘积相对误差估计。对于参数分量的假设检验,提出了零假设和检验统计量下的约束估计。建立了估计量和检验统计量的渐近性质。提出了一种计算临界值的自助法 bootstrap 。模拟仿真研究表明了该方法的有效性,并将该方法应用于一组实际数据进行统计分析。

 论文主要研究乘积回归模型中自变量和响应变量均受到扭曲因子的污染而不可观测的统计分析问题。我们所做的主要工作如下:(1)对数据带扭曲测量误差条件下乘积回归模型的介绍及变量校准过程的介绍。我们使用直接插入法[1,2,3] 获取校准过的协变量和校准过的响应变量。(2)运用校准之后的变量,提出了无对数变换的最小乘积相对误差( LPRE )估计。我们考虑对0 进行假设检验来考察0 是否满足某些线性组合。为了模拟检验统计量的零分布,提出了自助法来定义 p 值。(3)基于对数变换的最小二乘估计的介绍。我们研究了提出的估计量、检验统计量和约束估计量的大样本性质,并通过理论证明了最小二乘估计量和 LPRE 估计量的有效性。(4)使用本文提出的方法对模拟数据和实际数据进行统计分析,并给出数据分析结果。

  关键词:扭曲测量误差;最小乘积相对误差估计;最小二乘估计;自助法;约束估计量

 Multiplicative regression models with distortion measurement errors II

  Abstract

  When we deal with the measurement error data, the naive procedure by simply ignoring measurement errors always leads to a biased and inconsistent estimator. As a result, we should solve such practical problems by choosing some proper measurement error models.

 There are two types of measurement error data. One is the additive measurement error model. Another one has a multiplicative fashion, which we call the distortion measurement error model. In this paper we consider the distortion measurement error model. This paper studies the estimation and hypothesis test of multiplicative linear regression model with distortion measurement error. Through theoretical and simulation research, the estimation effect of the estimators are discussed.

 This paper considers estimation for multiplicative linear regression models when neither the response variable nor the covariates can be directly observed, but are distorted by unknown functions of a commonly observable confounding variable. After taking logarithmic transformation on the response variable, we propose an estimation methods for the parameter. That is the least squares estimator. Another is the least product relative error estimator without logarithmic transformation. For the hypothesis testing of parametric components, restricted estimators under the null hypothesis and test statistics are proposed. The asymptotic properties for the estimators and test statistics are established. A bootstrap procedure is proposed to calculate critical values. Simulation studies demonstrate the performance of the proposed procedure and a real example is analyzed to illustrate its practical usage. The main work we have done is as follows: Firstly, we propose the product linear regression model with distortion measurement error and variable calibration process. We use the direct plug-in method (Cui et al. 2009; Delaigle et al. 2016; Zhao and Xie 2018) to obtain calibrated covariates and calibrated response variable. Secondly, by using the calibrated variables, we propose the LPRE estimator without logarithmic transformation. We consider statistical inference for 0 to test whether 0

 satisfies some linear combinations or not. To mimic the null distribution of the test statistic, a bootstrap procedure is proposed to define p-values. Thirdly, we propose the least square estimation with logarithmic transformation. We investigate the large sample properties for the proposed estimators, test statistics and restricted estimators. And we prove the asymptotic properties of least square estimator and LPRE estimator by theory. Lastly, we conduct Monte Carlo simulation and real data analysis to

 Multiplicative regression models with distortion measurement errors III

 illustrate our proposed methods.

 Key words: Distortion measurement errors;Least product relative error estimator;Least squares estimator;Bootstrap;Restricted estimators.

 数据带扭曲测量误差条件下乘积回归模型的统计分析

 目

 录

  摘要 ........................................................ I Abstract ................................................... II 第 1 章 引言 ................................................ 1 1.1 研究背景及模型介绍 ................................... 1 1.2 研究意义和现状 ....................................... 2 1.3 本文的主要内容 ....................................... 3 第 2 章 最小乘积相对误差估计 ................................ 5 2.1 校准过程 .............................................. 5 2.2 定理条件 .............................................. 6 2.3 最小乘积相对误差估计 .................................. 7 2.3.1 估计方法 ......................................... 7 2.3.2 假设检验 ......................................... 8 第 3 章 基于对数变换的最小二乘估计 .......................... 11 3.1 最小二乘估计 ......................................... 11 3.2 假设检验 ............................................. 12 第 4 章 实验模拟分析 ....................................... 15 第 5 章 真实数据分析 ....................................... 19 第 6 章 总结与展望 ......................................... 23 6.1 论文总结 ............................................ 23 6.2 未来展望 ............................................ 24 参 考 文 献 ................................................ 25 附录 ....................................................... 28 引理 .................................................... 28 定理 1 的证明 ............................................ 28 定理 2 的证明 ............................................ 31

 数据带扭曲测量误差条件下乘积回归模型的统计分析

 定理 3 的证明 ............................................ 32 定理 4 的证明 ............................................ 33 致谢 ....................................................... 36 攻读硕士学位期间的研究成果 ................................. 37

 数据带扭曲测量误差条件下乘积回归模型的统计分析 1

 第 1 章 引言

 1.1 研究 背景及 模型介绍

  在现实生活中,我们经常要利用数学模型分析数据,但是,很多收集到的数据集并不精确,往往含有测量误差。测量误差是我们在进行数据分析时经常遇到的问题。由于观测者的技术水平、外界环境、仪器校准不正确等原因,测量误差问题很常见并存在于多学科领域中,如医学、健康科学、经济学等领域。对一些已经存在测量误差的变量,如果忽略其测量误差,直接使用观察到的数据进行参数估计,那么得到的估计结果往往有很大偏差甚至在大样本中也是不相合的。例如,

推荐访问:乘积 统计分析 条件下


[数据带扭曲测量误差条件下乘积回归模型统计分析]相关文章