6.4,平面向量应用--几何、物理(原卷版)
时间:2021-10-22 09:43:38 来源:网友投稿
6.4 平面向量的应用-- 几何、物理
1. 向量在平面几何中的应用;2. 向量在物理中的应用;3. 用向量方法探究存在性问题.
一、单 选题 1.(2020·全国课时练习)设有四边形 ABCD,O 为空间任意一点,且 AOOB DO OC ,则四边形 ABCD 是(
) A.空间四边形 B.平行四边形 C.等腰梯形 D.矩形 2.(2020·桂阳县第二中学期中)在 ABC 中,若 0 CA CB CA CB ,则 ABC 为(
)
A.正三角形 B.直角三角形 C.等腰三角形 D.无法确定 3. (2020·吉林扶余市第一中学期中)在ABC 中, AB ACBA BC CA CB ,则 ABC 的形状为(
). A.钝角三角形 B.等边三角形 C.直角三角形 D.不确定 4.(2019·江西新余·高二期末(文))若 AB · BC +2AB<0,则△ABC 必定是(
)
A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰直角三角形 5.(2020·全国高一专题练习)一条河的宽度为 d ,一只船从 A 处出发到河的正对岸 B 处,船速为1 v,水速为2 v,则船行到 B 处时,行驶速度的大小为(
)
A.2 21 2 v v B.2 21 2 v v
C.2 21 2 v v D.2 21 2 v v 6.(2020·朝阳·北京八十中高一期中)一质点受到平面上的三个力1 F,2F ,3F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成 60 角,且1F ,2F 的大小分别为 2 和 4,则3F 的大小为(
)
A.6 B.2 C.8 D. 2 7
7.(2020·四川内江·高一期末(理))在四边形 ABCD 中, (1, 3) AB DC , || | |BA BC BDBA BC BD ,则四边形 ABCD 的面积为(
)
A. 2 3
B. 3
C. 4 3
D.2 8.(2020·湖北襄城·襄阳五中高一月考)两个大小相等的共点力1 2F F , ,当它们夹角为 90 时,合力大小为20N ,则当它们的夹角为 120 时,合力大小为(
)
A. 40N
B. 10 2N
C. 20 2N
D. 10 3N
9.(2020·衡水市第十四中学高一月考)如图所示,设 P 为 ABC 所在平面内的一点,并且1 14 2AP AB AC ,则 BPC 与 ABC 的面积之比等于(
)
A.25 B.35 C.34 D.14 10.(2020·河南开封·高一期末)已知 O 是平面上的一定点, 、 、 A B C 是平面上不共线的三个动点,点 P 满足 OP OA coscosAB ACAC CAB B,则动点 P 的轨迹一定通过 ABC 的(
)
A.重心 B.外心 C.垂心 D.内心 二、多选题 11.(2020·江苏如东·高一期末)在 ABC 中, 2,3 AB , 1, AC k ,若 ABC 是直角三角形,则 k
的值可以是(
)
A. 1
B. 113 C.3 132 D.3 132 12.(2020·全国高一单元测试)点 P 是 ABC 所在平面内一点,满足 2 0 PB PC PB PC PA ,则ABC 的形状不可能是(
) A.钝角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 13.(2020·济南市历城第二中学高一开学考试)点 O在 ABC 所在的平面内,则以下说法正确的有 (
) A.若 0OA OB OC ,则点 O为 ABC 的重心 B.若0AC AB BC BAOA OBAC AB BC BA ,则点 O为 ABC 的垂心 C.若 ( ) ( ) 0 OA OB AB OB OC BC ,则点 O为 ABC 的外心 D.若 OA OBOB OC OC OA ,则点 O为 ABC 的内心 14.(2020·全国高一课时练习)在 ABC 中,下列结论正确的是(
) A. ABAC BC B. AB BCAB BC
C.若 0 AB AC AB AC ,则 ABC 为等腰三角形 D.若0 AC AB ,则 ABC 为锐角三角形 三、填空题 15. (2020·海南临高二中期末)在 ABC 中,已知 4 AB AC ,且8 AB AC ,则 ABC 的形状为______. 16.(2020·全国高二课时练习)已知 | | 5 OA , || 2 OB uuur, , 60 OA OB ,2 OC OA OB ,2 OD OA OB ,则以 OC , OD 为邻边的平行四边形 OCED 的对角线 OE 的长为________. 17.(2020·新乡市第一中学高一月考)如图,等腰三角形 ABC , 2 AB AC , 120 BAC . E , F分别为边 AB , AC 上的动点,且满足 AEmAB , AFnAC ,其中 m ,(0,1) n, 1 m n , M ,N 分别是 EF , BC 的中点,则 || MN 的最小值为_____.
四、双空题 18.(2020·山东诸城·高一期中)如图所示,把一个物体放在倾斜角为 30°的斜面上,物体处于平衡状态,且受到三个力的作用,即重力 G,沿着斜面向上的摩擦力1F ,垂直斜面向上的弹力2F .已知180N F ,则G 的大小为________,2F 的大小为________.
19.(2020·全国高一课时练习)如图所示,两根绳子把质量为 1kg 的物体吊在水平杆 AB 上(绳子的质量忽略不计,g=10m/s 2 ),绳子在 A,B 处与铅垂方向的夹角分别为 30° , 60 ,则绳子 AC 和 BC 的拉力的大小分别为______,______.
20. (2020·抚顺市第十中学高一月考)已知直角梯形 ABCD 中,// AD BC , 90 ADC , 2 AD , 1 BC ,P 是腰 DC 上的动点,则3 PA PB 的最小值为_________;此时PDCD __________. 21.(2019·全国高三专题练习(理))已知矩形 ABCD 中 2 AB , 1 AD ,当每个 (1,2,3,4,5,6)ii 取遍 时,1 2 3 4 5 6AB BC CD DA AC BD 的最小值是_____,最大值是_______. 五、解答题 22.(2020·海南临高二中期末)某人在静水中游泳,速度为 4 3 千米/时,现在他在水流速度为 4 千米/时的河中游泳. (1)若他沿垂直于岸边的方向游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少? (2)他必须朝哪个方向游,才能沿与水流垂直的方向前进?实际前进的速度大小为多少?
23.(2020·甘肃城关·兰州一中期末)在平面直角坐标系 xoy中,点 ( 1, 2), (2,3), ( 2, 1) A B C . (1)求以线段 AB、AC 为邻边的平行四边形两条对角线的长; (2)设实数 t 满足 ( ) 0 AB tOC OC ,求 t的值. 24.(2020·全国专题练习)已知三个点 2,1 A , 3,2 B , 1,4 D . (1)求证:
AB AD ; (2)若四边形 ABCD 为矩形,求点 C 的坐标及矩形 ABCD 两对角线所成锐角的余弦值. 25.(2020·灵丘县豪洋中学高一期中)如图所示,在平行四边形 ABCD 中,已知 3 AB , 2 AD ,60 DAB ,点 P 在线段 CD 上(除两端点),1 AP BP .求点 P 的位置.
26.(2020·上海高三专题练习)求证:三角形的三条高线交于一点. 27.(2020·苍南县树人中学高一期中)如图,在矩形 ABCD 中, 4 AB , 3 AD , E 为对角线 BD 上一点,且满足:13AE AD mAB , R m .
(1)求 m ,并直接写出 AD DB R 的最小值(不需要证明); (2)求2 2EA EC 的值.
[6.4,平面向量应用--几何、物理(原卷版)]相关文章
- 6.1,平面向量及其线性运算(原卷版)
- 6.6,第六章,《平面向量》,综合测试(原卷版)
- 6.4,平面向量应用--几何、物理(解析版)
- 6.6,第六章,《平面向量》,综合测试(解析版)
- 6.3,平面向量基本定理及坐标表示(原卷版)
- 6.1,平面向量及其线性运算(解析版)
- 6.3,平面向量基本定理及坐标表示(解析版)
- 6.2,平面向量数量积(原卷版)
- 向量平行与垂直练习题含解析
- 《几何概型》教案完美版.doc
- 2021平面设计员工工作述职报告2020
- 2023年度广告平面设计合同通用12篇(精选文档)
- 平面设计实习自我总结16篇【优秀范文】
- 关于平面设计实习心得文章23篇
- 平面设计个人工作计划6篇
- 2023年度平面设计助理实习周记
- 上一篇:院感管理组分工条款汇总
- 下一篇:7.2,第七章,《复数》,,综合测试(解析版)