长方体表面积教学反思3篇
时间:2023-01-22 19:55:05 来源:网友投稿
长方体表面积的教学反思1 1、关注学生观察、思维、实践能力的培养: 在教学长方体和正方体表面积时,我让学生在课前收集了一些不同材质、大小不同的长方体物件,以制作这些物体需要多少材料这个实际问题入下面是小编为大家整理的长方体表面积教学反思3篇,供大家参考。
长方体表面积的教学反思1
1、关注学生观察、思维、实践能力的培养:
在教学长方体和正方体表面积时,我让学生在课前收集了一些不同材质、大小不同的长方体物件,以制作这些物体需要多少材料这个实际问题入手展开教学,然后让学生思考,想办法,动手剪,展开后求出展开图的总面积即可,从而揭示表面积的概念。学生对学习材料本身是非常熟悉的,因而感到很有兴趣,在课堂教学中保持着比较活跃的思维状态。课堂教学目标的实施非常顺利。课后,布置学生进行课外实践作业,寻找生活中的不同材质、不同大小的长方体物件,分析制作这个物件需要材料的多少与长方体、正方体表面积计算的联系。有利于培养学生观察、思维、实践能力。
2、抓住事物的本质特征展开教学。
在教学表面积的计算方法时注意引导学生依据长方体和正方体的面的特征展开教学。通过对长方体正方体教具的观察、测量、计算来体验探究表面积的整个过程。在教学过程中,还结合学具,让学生在长方体、正方体学具上标出长、宽、高,然后思考相对的面面积怎么求,从而让学生逐步养成一一对应的数学思想。
3、强化技能训练,练好解决实际问题的基本功:
由于表面积教学已不再死定计算公式,这也为提高学生解决实际问题能力所必须。因而在教学中,我关注了学生作图能力的训练,从开始的看图说数据,到根据数据画草图,再由看数据想图形,在这个训练过程中培养学生的空间想象能力,同时让学生有利于提高学生解决实际问题的能力。
4、联系生活实际解决问题
为了培养学生解决问题的灵活性,我设计了多个与生活息息相关的"素材,如要制作一个电视机罩需要多少布、制作一个金鱼缸需要多少玻璃、一个牛奶盒要包装四周需要多大的包装纸等等,让学生根据实际情况思考到底要求哪几个面的面积总和,然后选择有关数据进行计算,灵活解决实际问题,二不是死板的运用知识。
在教学过程中出现的一些问题:
1、学生生活经验还有所欠缺:
从一些作业中发现有的学生在解决实际问题的时候,有些同学很难与实际物件联系起来。比如房屋的通风管,由于缺乏观察生活的习惯,有的同学计算使用铁皮时计算了6个面的面积。还有些同学缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积。特别是一些拓展创新题,更是让不少学生感到困难。学生缺乏耐心细致,做不到具体情况具体分析,区别对待,因而在解决实际问题时,失误较多。
2、学生对词语表述的理解能力比较弱:
例如横截面、占地面积、周围所蕴涵的数学内涵还不够理解,影响了解决问题的效果。
长方体表面积的教学反思2
老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:
一、本节为什么要把长方体再展开?
立体图形的表面积,求的是面积。既是面积,就是*面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为*面问题,才能用面积的概念去给表面积下定义。在*面几何里,所讨论问题的前提都是“在同一*面上”,因此,要再次展开。
三维立体空间与二维*面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与*面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。
二、为什么要安排“估算”?
教材在“估一估,算一算”的小标题下,提出:“做上面的纸盒,至少需要用多少纸板?先估一估,再精确计算。”
我认为,这首先是一个实际应用问题,是做纸盒时必然要遇到、要解决的问题。既然从生活中提出了做纸盒,就理所当然地要服从生活逻辑。
其次,这里说的是“至少”,也就是,估算时应当“往大里去”。因此,可以是用最大面的面积乘以6,也可以是把整个展开图看成一个大的长方形的局部。这样处理,就不会跟后面精确计算的过程重复,也就不会显得多余。
更重要的是,估算技能是一种重要的数学技能,估算意识是一种重要的数学意识,重视估算,是新课标、新课程对传统数学教学的最显著、最重要的改进之一。本节的引例又确有估算的实际需要,因此,教材在本节安排估算是很有道理的。
三、正方体图形为什么要给出三棱长?
本节的课题是《长方体表面积》,而非过去教材的《长方体、正方体的表面积》。在教材的正文中实际上只讨论了长方体的表面积,而对正方体表面积只是在“试一试”中作为长方体表面积的一个应用给出。在“试一试”里给出的条件是“棱长为0.8米的正方体”,而在紧接着的“练一练”中,给出的正方体图形则标明了三维的数据。
我认为,这段教材的意图是:让学生由“正方体是特殊的长方体”,套用长方体表面积的算法来计算正方体的表面积。教师在教学中,不应当把“正方体的表面积等于棱长*方乘以6”处理为学生的“已知”,而必须让学生经历简单的推理过程。也就是,要把“棱长为0.8米的正方体”转化为“长、宽、高都是0.8米的长方体”,然后,套用长方体表面积的计算方法,再简化为“棱长*方乘以6”。否则,在数学逻辑上就是不严密的。
长方体表面积的教学反思3
教学《长方体的表面积》这一课,我主要想通过学生的操作,让学生理解表面积的概念,初步掌握长方体表面积的计算方法,会用求表面积的方法解决生活中的一些简单问题。
课堂中,在学生认识了表面积的概念后,结合例题,我引导学生求长方体的表面积时,提出问题:“你能想办法求出这个长方体六个面的总面积吗?试着做一做”。不一会儿,两种方法写在了黑板上,学生列出了这样的算式:0.7×0.5×2+0.7×0.4×2+0.5×0.4×2和(0.7×0.5+0.7×0.4+0.5×0.4)×2,我顺势引导学生得出长方体表面积的计算方法。这时,史渊博站起来说:“老师,还可以这么列算式:0.7×0.5×2+(0.7+0.5)×2×0.4”。
说实话,这种方法我们在计算圆柱体的表面积时经常用到,而对于计算长方体的表面积时,我一直认为孩子们不会想出这种方法,所以过去几次教学这一课时从未介绍过。既然今天孩子们提出来了——这种预设之外的生成性资源,那我必须顺势开发利用。我接着提出:“这种方法对吗?”孩子们面面相觑,不知如何判断。“你能给我们讲讲是怎样想的吗?”看到孩子们如此的表情,我又继续提出问题。“这个长方体包装箱,先做两个底面,需要0.7×0.5×2*方米硬纸板,而长方体前后左右四个面展开是一个大长方形,这个大长方形的长是长方体两个长加两个宽的和,宽是长方体的高,所以这四个面的面积是(0.7+0.5)×2×0.4,把两个底面加四个面就是这个长方体六个面的总面积。”史渊博一口气说出了自己的想法。“是这样子吗?那我们动手将手中的长方体剪剪看吧。”学生动手将手中的长方体上下两个底面剪去,其余四个面沿一条高剪开,发现的确是长方形,而这个长方形的长是底面周长,宽是长方体的高,这种方法自然很容易理解了。这样一个教师认为不适合对学生讲的问题方法,随着学生的提出迎刃而解了。
课后,细细琢磨,教师只不过是让学生说出了自己的想法,而实际是将学习的主动权交给了学生,结果创造了水到渠成的事。看来,学生是金子,只要我们真正把主动权还给他们,允许他们用自己的大脑思考,用自己的嘴巴表达,就能激起孩子们思维的火花,发出耀眼的光芒,我们的课堂也就更加精彩!
推荐访问:长方体 表面积 反思 长方体表面积教学反思3篇 长方体表面积的教学反思1 长方体的表面积的教学反思
[长方体表面积教学反思3篇]相关文章
- 长方体表面积、体积计算应用练习题
- 《长方体和立方体认识》说课稿3篇【精选推荐】
- 《圆柱表面积》教学反思例文2020
- 《拔萝卜》教学反思
- 《角初步认识》教学反思
- 初二学生自我反思总结 化学教师总结与反思800字
- [教师年度总结与反思800字新版2020] 教师个人工作总结2020小学
- 教师个人工作总结2020小学_教师年度总结与反思2020
- 教师年度总结与反思1000字新版2020|个人总结2020年幼儿园教师
- 教师年度总结与反思1200字新版2020 个人总结2020年幼儿园教师
- 角平分线教学反思12020
- 【《Happy,birthday》教学实录与反思】birthday教案
- 安全生产“大反思、大排查、大整顿”活动反思心得材料|
- 上一篇:2023年度银行科技人员年终总结3篇
- 下一篇:高中学生毕业自我评价五篇(范例推荐)