《等腰三角形》教学反思五篇

时间:2023-01-10 11:35:05  来源:网友投稿

《等腰三角形》教学反思1  本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形两个底角相等、三线合一的性质。  “等腰三角形”是学生小学学过的、生活中常见的一类*面图形,今天讲的一下面是小编为大家整理的《等腰三角形》教学反思五篇,供大家参考。

《等腰三角形》教学反思五篇

《等腰三角形》教学反思1

  本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形"两个底角相等"、"三线合一"的性质。

  “等腰三角形”是学生小学学过的、生活中常见的一类*面图形,今天讲的一定要是有别于以往的、又对旧知识做一个补充和印证的。因此我给它定位是“轴对称图形”的典型代表。从这点出发结合“探究1”让学生用不同的方法得到等腰三角形,继而复习它的相关概念,由“探究2”让学生自主探究等腰三角形的性质。实践、交流、归纳出等腰三角形的2点性质:"两个底角相等"、"三线合一"。要论证猜想的正确性,除了小学里的等腰三角形翻折的直观印证外,就要用到之前的“证明三角形全等”这一常见方法了。在此,将猜想的命题转化成符号语言是一个初步的训练。而此命题证明的关键是“添加辅助线”,有前面两个“探究”,如何添加辅助线也就水到渠成了。这条辅助线就是图形的对称轴。结合课本76页证明过程,进一步提出:将“作底边BC的中线AD”改为“过A作底边BC的高线AD”或者“作∠BAC的*分线AD交BC于D”性质1、2是不是同样得到证明?证明过程中有什么异同?在此要给学生强调:性质2实际上包含了三个命题,需要一一证明。这点在辅助线的添加处加以说明:作中线,证高线,证*分线;作高线,证中线,证*分线或作角*分线,证高线,证中线。

  性质2不容易引起学生的重视,但它的应用十分广泛,所以我在此补充了例题让学生加以巩固。

  等腰三角形的2条性质对今后证明线段相等或角相等方面有很多的应用,限于课堂时间有限,没有加以补充,今后具体问题时再予总结。

《等腰三角形》教学反思2

  3月4日

  本节课的教学重点是认识等腰三角形和等边三角形以及它们的特征。我首先出示两块三角板,通过观察让学生发现有一块三角板边不同于另一块,有两条边相等的,从而引出等腰三角形,然后利用折纸这个活动,来进一步体会等腰三角形的特点。等边三角形与之类似,在教学中我把重点放在折纸上,先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,在等腰三角形的操作中,学生做得还可以,但在做等边三角形时,有些学生看图不细,点的位置不正确导致做的效果不好。从这点也反映了学生看图能力有待加强。三角形剪出来以后,又让学生比一比,看一看,总结出等边三角形的特征。因为两次折纸用时较多,中间我又简单地补充了怎样画一个等腰三角形和一个等边三角形,所以后面练习的时间很紧张,有关习题没有当堂完成。

  3月5日

  一、处理不及,只好留着今天完成。

  这一节知识点饱满,上课时根本来不及,又加上昨天中午英语考试,根本是一点时间也和不上,所以昨天留了个尾巴,今天才算上完。

  本节课的教学重点是认识等腰三角形和等边三角形以及它们的特征。教材的安排是首先呈现几个不同类型的三角形,让学生通过测量边的长度,发现他们的共同特点是两条边相等,从而引出等腰三角形的概念。然后利用折纸这个活动,来进一步的体会等腰三角形的特点。等边三角形的编排与之类似。

  在教学中我把重点放在活动上。先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,在等腰三角形的操作中,学生做得很好,在做等边三角形时,有些学生看图不细,点的位置不正确导致做的效果不好。从这点也反映了学生看图能力有待加强。三角形做出来之后,充分地让学生折一折、比一比、看一看,让学生在这个过程中,体会出等腰三角形和等边三角形的特征。因为我在这给学生留的时间较充裕,所以学生基本上都能自己总结出来。但也是因为这里用时较多,所以在练习时时间很紧张,没能当堂完成。

  二、交代清楚自己的思维过程。

  但是不可避免的,这一部分的练习内容肯定是较错的。因为等腰三形中涉及到底角和顶角,两腰相等,学生明白概念和实际动手运用概念是要有一个过程的。更何况对于一些抽象思维能力不太好的学生来说,还是很困难的。所以在讲练习时,我还是宁可讲慢些,也一定要逼一些学生把自己的思维过程交代清楚,以求得自己对学生学习情况的全局掌握性。只是,对于一些学生而言,到今天为止,我发现他们根本就不去思考什么顶角呀,什么底角的问题,拿到题目拿内角和瞎减一气,无奈呀!

《等腰三角形》教学反思3

  今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:

  (一)突出重点,实现教学目标

  《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。

  (二)导课自然,成功引入新课

  首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问题情境,把问题作为教学的出发点,激发学生的学习兴趣。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。

  (三)设置有梯度,学生易于接受

  在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。有着良好的效果

  这节课,也有不足的地方:

  (一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。

  (二)上课的节奏有点快。在以后的教学中能多加以改正。美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的.教学中应多补充些例题及习题。

《等腰三角形》教学反思4

  《等腰三角形的判定》是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的*行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材具有承上启下、至关重要的作用。在中考题中属于一个考点知识。因此,本节课我主要采用的教法是引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。

  本节课按照质疑、猜想、验证、推理的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,使学生通过“会学”最终达到“学会”。

  教学一开始,学生通过回顾总结等腰三角形的性质为学习等腰三角形的判定做了知识铺垫。之后我将本节课的教学目标展示给学生,让学生做到心中有数,让学生带着问题看书,加强自主探索的能力。通过学生观察、思考例题,自然地渗透分类讨论的数学解题思想。

  通过课堂小结,让学生归纳比较等腰三角形的性质和判定的区别,同时将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考。整节课的目标基本实现,重点难点落实得比较到位,为以欠缺的是时间有点紧,课堂小结比较仓促。

《等腰三角形》教学反思5

  本节课重点要让学生通过实践、交流、猜想、论证,得出等腰三角形"两个底角相等"、"三线合一"的性质。

  “等腰三角形”是学生小学学过的、生活中常见的一类*面图形,今天讲的.一定要是有别于以往的、又对旧知识做一个补充和印证的。因此我给它定位是“轴对称图形”的典型代表。从这点出发结合“探究1”让学生用不同的方法得到等腰三角形,继而复习它的相关概念,由“探究2”让学生自主探究等腰三角形的性质。实践、交流、归纳出等腰三角形的2点性质:"两个底角相等"、"三线合一"。要论证猜想的正确性,除了小学里的等腰三角形翻折的直观印证外,就要用到之前的“证明三角形全等”这一常见方法了。在此,将猜想的命题转化成符号语言是一个初步的训练。而此命题证明的关键是“添加辅助线”,有前面两个“探究”,如何添加辅助线也就水到渠成了。这条辅助线就是图形的对称轴。结合课本76页证明过程,进一步提出:将“作底边BC的中线AD”改为“过A作底边BC的高线AD”或者“作∠BAC的*分线AD交BC于D”性质1、2是不是同样得到证明?证明过程中有什么异同?在此要给学生强调:性质2实际上包含了三个命题,需要一一证明。这点在辅助线的添加处加以说明:作中线,证高线,证*分线;作高线,证中线,证*分线或作角*分线,证高线,证中线。

  性质2不容易引起学生的重视,但它的应用十分广泛,所以我在此补充了例题让学生加以巩固。

  等腰三角形的2条性质对今后证明线段相等或角相等方面有很多的应用,限于课堂时间有限,没有加以补充,今后具体问题时再予总结。

推荐访问:角形 反思 教学 《等腰三角形》教学反思五篇 《等腰三角形》教学反思1 等腰三角形的教学反思