*行四边形面积教学设计,菁选3篇

时间:2023-02-26 10:00:09  来源:网友投稿

*行四边形的面积的优秀教学设计1  一、教学目标  1、知识与技能:会计算*行四边形的面积,培养学生用多种策略解决问题的能力。  2、过程与方法:经历用数方格和割补法探索*行四边形面积公式的过程,培下面是小编为大家整理的*行四边形面积教学设计,菁选3篇,供大家参考。

*行四边形面积教学设计,菁选3篇

*行四边形的面积的优秀教学设计1

  一、教学目标

  1、知识与技能:会计算*行四边形的面积,培养学生用多种策略解决问题的能力。

  2、过程与方法:经历用数方格和割补法探索*行四边形面积公式的过程,培养学生转化的数? 学思想。

  3、情感、态度与价值观:在解决实际问题的过程中培养学生学以致用的数学思想。

  二、教学重、难点

  重点:掌握*行四边形的面积计算公式,会用此公式解决相关问题。

  难点:理解图形割补前后的关系。

  三、教学过程

  1、前置教学:

  向学生介绍“曹冲称象”的故事,让学生感受转化思想。由此引入新课。

  2、新知探究:

  (1)出示图片,让学生观察马路边等底等高的*行四边形与长方形草坪。猜想那一个面积大。

  (2)引导学生复习长方形的面积计算方法。并猜想*行四边形的面积计算方法。

  (3)引导学生用数方格的方法比较两个图形的面积大小,从而初步发现等底等高的*行四边形与长方形面积相等。

  (4)学生小组活动:让学生动手操作,把*行四边形纸片割补成面积不变的长方形纸片。

  (5)让各组代表展示各种割补的方法,老师引导学生认识到:割补前的*行四边形的底等于割补后长方形的长,割补前*行四边形的高等于割补后长方形的宽。

  (6)动画演示割补的过程,进一步帮助学生理解上述关系。并引导学生利用这一关系和长方形的面积计算公式推导出*行四边形的面积计算公式:*行四边形的面积=底X高。

  (7)引导学生根据上公式推导出求*行四边形的底或高的公式:底=面积/高,高=面积/底。

  (8)引导学生利用公式解决实际问题(例题教学)。

  (9)强化训练:选一选、填一填、辨一辨。让学生积极思考问题,主动完成题目。老师适当点拨,并对学生进行相关的变式训练。

  (10)课堂小结。师生共同小结后,师强调本节的重点与关键。

*行四边形的面积的优秀教学设计2

  一、教学目标

  (一)知识与技能

  让学生经历探索*行四边形面积计算公式的过程,掌握*行四边形的面积计算方法,能解决相应的实际问题。

  (二)过程与方法

  通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

  (三)情感态度和价值观

  通过活动,培养学生的探索精神,感受数学与生活的密切联系。

  二、教学重难点

  教学重点:探索并掌握*行四边形面积计算公式。

  教学难点:理解*行四边形面积计算公式的推导过程,体会转化的思想。

  三、教学准备

  *行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

  四、教学过程

  (一)创设情境,激趣导入

  1.创设情境。

  (1)呈现教材第86页单元主题图。(PPT课件演示)

  教师:瞧!校园门口,你在哪些物体上看到了我们学过的*面图形?

  (2)学生汇报交流。

  (3)回顾:我们生活在一个图形的世界里,这些图形有大有小,*面图形的大小就是它们的面积。我们已经研究过哪些*面图形的面积?怎样计算?

  预设学生回答:长方形的面积=长×宽,正方形的面积=边长×边长。

  (4)引入新课:这幅图中除了有长方形和正方形,还有*行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入“多边形的面积”的学习。(板书单元课题:多边形的面积)

  2.揭示本节课题。

  复习引入。(PPT课件演示)

  请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那*行四边形的面积怎样计算呢?今天这节课,我们就一起来研究*行四边形的面积。(板书课题:*行四边形的面积)

  【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入*行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。

  (二)主动探索,推导公式

  1.用面积单位测量*行四边形的面积。

  (1)提问:要知道这个*行四边形的面积,怎么办?(PPT课件演示)

  引导学生回顾用面积单位测量图形面积的方法。

  (2)操作:现在把它们放在方格纸上,一个方格代表1 m2,不满一格的都按半格计算。*行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)

  (3)学生先独立数*行四边形的面积,再互相交流。

  预设*行四边形的面积:

  方法一:从左往右数,每行6个,有4行,*行四边形的面积是24*方米;

  方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24*方米。

  长方形的面积:长6米,宽4米,面积是6×4=24(*方米)。

  (4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。

  (5)填写表格。

  ①师生共同完成表格:*行四边形的面积是多少?它的"底和高分别是多少?长方形呢?(PPT课件演示)

  ②引导学生观察:观察这个表格,你发现了什么?

  ③交流回报,小结:有的同学发现了,这个*行四边形的底与长方形的长相等,*行四边形的高和长方形的宽相等,*行四边形的面积与长方形的面积相等。还有的同学发现,这个*行四边形底乘以高正好等于它的面积,由此猜测*行四边形的面积=底×高。

  【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为*行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻*行四边形面积的计算方法做准备。

  2.操作思考,推导公式。

  (1)教师:看来,数方格的确能让我们知道*行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算*行四边形的面积呢?

  这个*行四边形的面积恰好等于底×高,那是不是所有的*行四边形的面积都等于底×高呢?看来,还需进一步研究哦!(PPT课件演示)

  (2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将*行四边形转化成它们来计算面积呢?请大家借助手中的*行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。

  (3)操作转化,推导公式。

  ①操作转化。

  a.学生独立思考,动手剪拼*行四边形,将它转化成长方形后组内交流。

  b.学生展示汇报。(PPT课件演示)

  c.大家发现它们有什么相同之处?为什么要沿着*行四边形的高来剪开?有多少种不同的剪法?为什么?

  ②观察思考。

  a.观察:原来的*行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)

  b.思考:*行四边形的底和长方形的( )相等,*行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)

  c.学生汇报。(教师板书)

  ③概括公式。

  你能根据长方形的面积计算公式推导出*行四边形的面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)

  (4)回顾与小结。

  ①我们已经知道*行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?

  ②教师小结:首先把一个*行四边形沿高剪开后*移拼成一个长方形,再观察原来的*行四边形和拼接后得到的长方形,发现等量关系:*行四边形的底和长方形的长相等,*行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以*行四边形的面积等于底乘高。像这样把未知的*行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。

  【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将*行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识——沿高剪开后通过*移将*行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。

  (三)巩固运用,解决问题

  1.教学教材第88页例1。

  (1)出示例题,呈现问题情境。(PPT课件演示)

  (2)理解题意,叙述题目内容。

  ①用自己的话说一说题目的意思是什么?

  ②学生根据图文叙述:知道*行四边形花坛的底是6米,高是4米,求花坛的面积是多少*方米。

  (3)收集信息,明确问题。

  ①提问:从题目中你获得了哪些数学信息?要求什么?

  ②思考:要求花坛的面积,其实就是求什么?

  ③归纳:要求花坛的面积,其实就是求底是6米、高是4米的*行四边形的面积。

  (4)学生独立解答。

  (5)学生汇报,教师板书,规范书写。

  2.课堂练习。

  完成教材第89页练习十九第1题。

  (1)学生独立完成。

  (2)同桌互相说说自己是怎样做的。

  (3)全班集体交流:这个问题你是怎样算的?

  【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。

  (四)变式练习,内化提高

  1.基本练习。

  完成教材第89页练习十九第2题。(PPT课件演示)

  (1)学生独立完成。

  (2)同桌互相说一说自己是怎样算的。

  (3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择*行四边形中对应的底和高来计算面积。)

  参考答案:12 cm2;18.72 cm2;4.8 cm2。

  2.提高练习。

  完成教材第89页练习十九第4题。(PPT课件演示)

  (1)理解题意:怎样计算出这两个*行四边形的面积?需要知道什么?(先测量出*行四边形中对应的底和高,再利用公式计算。)

  (2)学生独立完成。

  (3)全班集体交流:两个*行四边形的底和高分别是多少?怎样计算面积?

  3.拓展延伸。

  等底等高的*行四边形的面积一定相等吗?面积相等的*行四边形一定等底等高吗?(PPT课件演示)

  【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。

  (五)全课总结,畅谈收获

  1.今天这节课学习了什么?怎样学的?

  2.今天我们主要推导出了*行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了*行四边形的面积;再观察表格中的数据,猜测*行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的*行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的*行四边形与长方形之间的等量关系,从而推导出了*行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量——观察——猜测——转化——验证的过程,最后我们还利用公式解决了生活中的实际问题。

  (六)作业练习

  1.课堂作业:练习十九第5题。

  2.课外作业:练习十九第3题。

*行四边形的面积的优秀教学设计3

  教学目标:使学生经历探索*行四边形面积计算公式的推导过程,掌握*行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

  教学重、难点:探索并掌握*行四边形的面积计算公式及推导过程。

  教具学具课件、*行四边形卡片、剪刀、三角板、直尺等。

  教学模式:“我能行”四步教学法。(详见文后注)

  教学流程:

  课前交流:同学们,你们想了解老师吗?你想知道关于我的什么情况?

  预设:老师的年龄是多少?教几年级?

  师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?

  生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。

  师:想得真好,许老师就是(30)岁。

  师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。

  一、情境导入,确定目标

  师:1.在数学课堂上哪些地方用到了“转化”?

  预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。

  看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。

  2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?

  生:演示方法。

  3.师:为什么把它拼成一个长方形呢?

  预设:学过长方形面积的计算,而且能够拼成长方形。

  这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。

  4.刚才的图形“转化”过程,什么变了,什么没变?

  5.请同学们看这个*行四边形,它的面积怎样求呢?请看我们本节课的学习目标。

  (1)我会用“转化”的数学思想推导*行四边形的面积计算公式。

  (2)我会用*行四边形面积公式解决实际问题。

  【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。

  二、互动展示,生成问题

  师:1.你猜一猜*行四边形的面积会与什么有关?

  预设:长方形、正方形、底、高、夹角、相邻的边等。

  2.*行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的*行四边形纸片来试着“转化”求它的面积。

  3.请带着问题自学。(课件)

  4.四人小组交流一下你是怎样“转化”*行四边形面积的。

  【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。

  三、启发思路,引导归纳

  师:1.谁来汇报一下你们小组的发现?你们推导出*行四边形的公式吗?

  2.*行四边形的面积怎么算?

  3.板书:*行四边形的面积=底×高

  4.你是怎样推导的?说一下你的操作过程。

  5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(*行四边形的高)

  6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)

  7.这个*行四边形与剪拼的长方形之间有什么关系?

  预设:*行四边形的面积与长方形的面积相等(板书)

  8.剪拼后的长方形的长,是原*行四边形的什么?宽呢?

  9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示*行四边形的面积。(板书:S=ah)

  【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。

  四、练习检测,拓展链接

  1.练习检测卡一题。

  2.课件:判断、选择题、口答列式。

  3.练习检测卡二、三题。

  4.谈谈你对这节课的收获,好吗?

  拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。

  【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。

  板书设计:

  (注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主*等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)

推荐访问:教学设计 面积 菁选 菁选3篇 平行四边形面积的教学设计 平行四边形面积计算教学设计 教学设计一:在教学生求平行四边形面积时