2023年度教学设计:混合运算,菁选3篇(2023年)

时间:2023-04-10 11:40:09  来源:网友投稿

教学设计:混合运算1  【教学目标】  知识目标:  使学生体会分数混合运算的运算顺序和整数是一样的,会计算分数混合运算。  能力目标:培养学生操作、归纳能力。  情感目标:体会数学与生活的联系。下面是小编为大家整理的2023年度教学设计:混合运算,菁选3篇(2023年),供大家参考。

2023年度教学设计:混合运算,菁选3篇(2023年)

教学设计:混合运算1

  【教学目标】

  知识目标:

  使学生体会分数混合运算的运算顺序和整数是一样的,会计算分数混合运算。

  能力目标:培养学生操作、归纳能力。

  情感目标:体会数学与生活的联系。

  【教学重点】正确计算分数混合运算

  【教学难点】利用分数混合运算解决日常生活中的实际问题。

  【教学准备】课件

  【教学过程】

  课前谈话:同学们说说自己的兴趣爱好。(学生畅所欲言)

  一、回眸一看,引入新课。

  说一说:先算什么,再算什么。

  50+20-40125×8÷50(同级运算)

  4+150÷581-12×4(两级运算)

  (32-5)÷9(有括号的算式)

  做一做:6×5÷315×(35÷7)

  二、质疑问难,板书课题。

  想一想:分数混合运算的运算顺序。(板书:分数混合运算)

  三、探索验证,获取新知。

  1、课件呈现情境图,提出问题。

  出示数学书上第56页图。

  师:这是我们班上这学期开展兴趣小组活动的情况,你从图中获得了哪些数学信息?①气象小组有12人②摄影小组是气象小组的1/3③航模小组的人数是摄影小组的3/4。

  师:你能提出什么数学问题?航模小组有多少人?

  2、解决问题。

  (1)根据问题分析数学信息

  师:我们要求是什么?

  生:求航模小组有多少人?

  师:那航模小组的人数与谁有直接的关系,把它读出来。

  生:航模小组的人数是摄影小组的3/4。

  师:也就是说要求航模小组的人数,还必须知道到什么?(摄影小组的人数)

  师:那摄影小组有多少人呢?(不知道)

  师:所以我们在解决问题之前还必须想办法找摄影小组的人数?

  师:摄影小组的人数除了和航模小组的人数有直接的关系,还和谁有直接的关系?请您把它读出来。

  生:摄影小组的人数是气象小组的1/3。

  (2)引导提问

  师:摄影小组的人数是气象小组的1/3,谁的1/3?把谁看着单位“1”?(气象小组的人数),把它*均分成3份,取了这样的1份,就是1/3,表示摄影小组人数的分率。

  (师生边说,老师边板书,画出对应的线段图)

  师:在这线段图中,您还知道什么信息?(气象小组有12人)

  (师板书出来12人)

  师:根据线段图,你可以求出摄影小组的人数了吗?

  生:12×1/3=4(人)

  师:有了摄影小组的人数4人(板书4人),而我们的最终目的是要求到航模小组的人数。航模小组的人数是摄影小组的3/4,谁的3/4?把谁看着单位“1”?(摄影小组的人数)

  师:哦,再次把摄影小组的人数看着单位“1”,把它*均分成4份,取了这样的3份,就是3/4,表示航模小组人数的分率。

  (师生边说,老师边板书,画出对应的线段图)

  师:您会求航模小组的人数了吗?

  生:4×3/4=3(人)

  (3)分数混合运算的顺序与整数混合运算顺序的探讨。

  师:用手势给大家比比线段图的意思(先把气象小组的人数看着单位“1”,它的1/3是摄影小组的人数,再把摄影小组的人数看作单位“1”,它的3/4就是航模小组的人数)

  师:请你把刚才的两个算式列成综合算式:

  生:12×1/3×3/4

  =4×3/4

  =3(人)

  师:我们先算12×1/3求到摄影小组的人数4人,再算12×1/3的积去乘3/4,求出航模小组的人数。通过计算我们发现分数连乘也是从左到右依次计算

  小结:观察综合算式,我们发现分数连乘跟我们以前学过的整数连乘运算顺序(一样),都是是从左到右依次计算。

  其实分数混合运算的顺序与整数混合运算的顺序一样:先乘除后加减;在同级运算中,从左到右依次计算;有小括号的要先算括号里面的,再算括号外面的。

  (接着结合例题,说明分数连乘时,可以同时进行约分。注意书写格式。)

  4、看书:并齐读结论

  四、三动结合,当堂消化。

  1、动手。第56页试一试。

  2、动脑。实验小学四五六年级学生人数

  3、动口。看线段图编应用题。

  五、全课小结,拓展延伸。(航模小组的人数是气象小组的几分之几?)

  【板书设计】

  分数混合运算(一)

  12×=4(人)12×1/3×=3(人)

  4×3/4=3(人)

  【教学反思】

  本课要让学生掌握分数混合运算的运算顺序,并能运用分数混合运算解决日常生活中的实际问题。课堂容量较多,如何提高课堂效率?找准课的重难点尤为关键。通过对教材的分析,我有这样的认识:在以往的学习过程中,学生已经较好的掌握了整数混合运算的方法,教学中,学生或多或少的能将已学的知识迁移至新知的学习过程中,因此,在本课的学习中,运算顺序对学生来说并不是难点,但这是本课的重点之一,要让学生体会到分数混合运算的顺序和整数的混合运算的顺序是一样的,能正确的计算分数混合运算。而另一个知识点,让学生能利用分数混合运算解决实际问题,学会分析理解分数应用题,并画出正确的线段图表示题中的数量关系,提高学生们的数学应用能力则是本课教学的难点。

  教学时,我首先出示整数混合运算题,让学生直接写出得数。交流结果时,让学生观察说出:“这些都是什么题?计算时应注意什么?”。通过这样简短的一个环节唤醒学生对整数混合运算的认识。学生在学习小数混合运算时,就已经能将整数混合运算的方法迁移至小数混合运算中,那么学生也能在分数混合运算的学习中实现学习的正迁移。解决问题是难点,如何突破呢?我从引导学生省题入手。我想,解决任何问题,都应该先审题,理解题意,只有在理解了题意的前提下,问题才能得到解决。让学生养成审题的习惯和良好的方法,能提高学生解决问题的能力。在解决“航模小组有多少人”这个问题时,引导学生从问题入手审题、理解题意,并在信息中关键的地方用不同的符号标记出来,潜移默化的对学生进行审题方法的渗透。

教学设计:混合运算2

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第35~36页。

  教学目标

  1. 使学生在解决实际问题的过程中,理解并掌握三步混合运算的顺序,并能正确地进行运算。

  2. 使学生在理解混合运算顺序的过程中,进一步积累数学学习的经验,能用三步计算解决实际问题,发展数学思维。

  3. 使学生在数学学习中,进一步感受混合运算的应用价值,增强对数学学习的信心,培养严谨、认真的学习习惯。

  教学过程

  一、 铺垫

  1. 第一轮第一次游戏:用三张牌“算24点”。

  谈话:“算24点”游戏是我国劳动人民发明创造的,它具有益智、怡情等功能,因而备受人们的喜爱。今天,我们也来玩一玩“算24点”的游戏怎样?

  呈现三张扑克牌:2、4、10。

  待学生列出:2 × 10 + 4和4 + 2 × 10之后,教师追问:两道算式不同,都能算得24吗?为什么?

  板书:算式中有乘法和加法时,先算乘法,再算加法。

  2. 第一轮第二次游戏:教师再呈现三张扑克牌:4、4、7。

  提问:

  (1) 这道题我们也可以列出两道算式吗?为什么?

  (2) 4 × 7 - 4的算式中,我们可以先算减法吗?

  (3) 算式中有乘法和减法时,应该按什么顺序进行运算呢?

  [设计意图:本节课的引入方式可有多种,比如教材中联系实际问题,从具体的情境引入便是其中的一种。可这里似乎也有一些值得讨论的地方:一方面,我们可以借助具体的情景帮助学生理解混合运算的顺序,以便从算理上弄清为什么“先算乘、除法,后算加、减法”的道理。但另一方面,我们又不能不看到,到了三步以上的混合运算,如果要嵌入具体的情景之中,对学生的思维要求,特别是解决问题能力的要求是比较高的。因此,新课的引入,不应拘泥于一种固定不变的模式,而应该从学生已有的知识经验出发,寻求一个最能激发学生探索愿望、最有利于学生自主探索的切入口,使学生在有效的学习活动中得到充分的发展。

  怎样才能使教学活动既符合学生的认知基础,又富有一定的现实性和挑战性呢?我想到了“算24点”这个游戏。

  理由有三:

  一是这个游戏学生玩过,有经验、有兴趣,且不会在游戏规则的问题上耗费太多的时间;

  二是游戏的机动性强,三张牌、四张牌都可以玩,而用三张牌玩,刚好对应学生已经掌握的两步混合运算知识,用四张牌则对应了这节课将要学习的新知,这使得学生激活已有的经验成为可能,又使得旧知向新知的过渡变得自然而顺畅;

  三是算式被赋予了恰如其分的“意义”,学生要算得24,在头脑中已经经历了一个“分步列式”的过程,一旦形成综合算式,并不影响头脑中原有的运算顺序,相反,学生正是用头脑中已经确定的运算顺序来阐释综合算式的运算顺序,这就使得综合算式的运算顺序与学生头脑中的解题顺序对应起来,从而体会到混合运算顺序的合理性。]

  二、 新授

  1. 第二轮第一次游戏。

  引导:我们用四张牌来玩“算24点”游戏,情况会怎样呢?

  教师呈现四张扑克牌:2、2、5、7。

  要求:个人独立思考,尝试列出综合算式,然后将意见带到小组内进行交流。

  小组交流:

  (1) 小组内成员所列的算式都相同吗?

  (2) 这些算式运算的顺序和步骤也相同吗?

  (3) 比较不同的运算顺序,有区别吗?

  根据学生的回答,教师分别呈现:

  2×5+2×7 2×5+2×7

  =10+2×7=10+14

  =10+14=24

  =24

  2. 引导比较:两种运算顺序都是正确的,但哪一种运算过程更简单一些呢?

  3. 教师呈现:40 ÷ 4 - 28 ÷ 7,要求学生独立计算。

  4. 比较:2 × 5 + 2 × 7和40 ÷ 4 - 28 ÷ 7的运算顺序有什么相同的地方?

  5. 第二轮第二次游戏。

  教师呈现四张扑克牌:3、6、6、9。

  学生先行独立思考后,在小组内进行第二次合作。

  学生可能列出的算式有:6 × 6 - 3 - 9,6 + 6 ÷ 3 × 9,6 + 9 ÷ 3 × 6,6 + 6 × 9 ÷ 3,3 + 6 + 6 + 9……

  6. 将上面的算式按运算顺序的不同进行分类,观察分析后比较:

  (1) 哪些算式不是按照从左往右的顺序进行运算的?这些算式有什么共同的特征?

  (2) 哪些算式应该按照从左往右的顺序进行运算?这些算式有哪些相同和不同?

  (3) 在没有括号的算式里,如果有乘、除法和加、减法,应按照怎样的顺序进行运算呢?

  7. 小结规律,板书课题:混合运算。

  [设计意图:学生得出“在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法”,其实是经历一个归纳推理的过程。为了让学生对得出的结论深信不疑,我们应努力呈现各种情况,让学生在分析、比较、综合、概括的过程中加深对事理的理解。这一部分,我安排了两轮游戏,其作用分别对应于教材中的“例题”和“试一试”两部分的知识要点。第一部分侧重于体验学习,学生亲历尝试和交流,体会将算式中的乘法同时运算的优越性。第二部分侧重于分类和归纳,在开放的情境中比较同一级运算与两级运算的区别,进而发现两级运算的共同特征。值得一提的是,这一部分我着意引导学生进行了多次比较,如简单运算与较复杂运算的比较,同一类运算中不同运算顺序的比较等等,落脚点都是为了帮助学生建立起两级运算的运算顺序,增强学生的抗干扰能力。]

  三、 巩固

  1. 先说一说下面各题的运算顺序,再计算。

  80 ÷ 2 + 76 ÷ 4 240 ÷ 6 - 2 × 17

  45 - 20 × 3 ÷ 4 51 - 36 ÷ 3 + 25

  评讲:第一行两道题怎样计算更简便些?第二行两道题的运算顺序有什么不同?为什么会有这样的不同?

  2. 小虎学了今天的知识以后,很高兴,老师要求完成20 × 5 - 20 × 5和20 × 5 ÷ 20 × 5两题的计算,小虎不一会儿就算好了。同学们,我们也来看一看,小虎做得对吗?

  20×5-20×5 20×5÷20×5

  =100-100=100÷100

  =0=1

  [设计意图:小虎做的两题形式上比较相近,但第二题属同一级运算,第一题是两级运算。根据教学的前馈信息,学生常常容易发生混淆,故此处将两题同时呈现出来专门研究,便有了必要性。]

  3. “想想做做”第4题。

  学生独立完成后,讨论:求兵兵家的人均居住面积比乐乐家大多少,要先算什么,再算什么?

  4. 在数与数之间添上加、减、乘或除号,使计算结果正好等于右边的数。

  2 2 2 2 = 1

  2 2 2 2 = 2

  2 2 2 2 = 3

  2 2 2 2 = 4

  2 2 2 2 = 5

  [设计意图:练习设计努力体现针对性、层次性、综合性、开放性等特点,不仅立足于帮助学生巩固计算的方法,加深学生对本节课知识的理解,而且在不断变式的过程中,引导学生学习有趣的数学、有用的数学、智慧的数学。]

教学设计:混合运算3

  教学内容:

  苏教版四年级(下册)第35—36页例题、“试一试”,“想想做做”第1--6题。

  教学目标:

  1、让学生联系解决生活实际问题的过程感悟、理解并掌握不含括号的三步混合运算的顺序,能正确地进行计算,并能用以解决三步计算的实际问题。

  2、让学生在学习活动中增强类比迁移能力和抽象概括能力,获得成功体验,感受学习数学的乐趣。

  教学重点:掌握三步计算的运算顺序

  教学难点:运用三步计算解决实际问题

  设计理念:运用知识的迁移,自主探索规律

  教学准备:课件

  教学过程:

  一、复习铺垫

  说出先算什么,再计算。

  560+4×220-15÷3

  学生在纸上直接进行计算,指名板演,集体订正。由学生小结两步混合运算的运算顺序。(在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。)

  二、创设情境、导入新课

  1、谈话:很多同学都喜欢下棋,本周兴趣小组要开展棋类活动,老师准备购买一些棋具。我们一起去看看老师买棋时遇到了什么数学问题:出示主题图。这是一道购物的实际问题,遇到这类问题你马上会想到哪些基本数量关系?(课件出示数量关系:单价×数量=总价)

  2、学生看图说一说:从图中你知道哪些数学信息?

  (1)象棋一副12元,围棋一副15元;

  (2)老师要买3副象棋和4副围棋。

  3、想一想,怎样才能算出买象棋和围棋一共要付多少钱?

  (1)小组合作,分析数量关系、尝试列式计算。(根据单价×数量=总价,让学生明确:要用象棋的单价乘象棋的数量等于象棋的总价,围棋的单价乘围棋的数量等于围棋的总价;分别算出两种棋的总价加起来就是一共要付的钱。)

  (2)由组长汇报,板演组内算式,板演后再说说列式的依据。(学生可能会得到以下算式)

  12×3=36(元)15×4=60(元)36+60=96(元)12×3+15×415×4+12×3

  (3)集体订正,理解数量关系。(如果学生没有列出综合算式,则引导学生从数量关系上来列式,12×3是求象棋总价,15×4是求围棋总价,求一共要付多少钱要用加法连起来。象棋总价加围棋总价或围棋总价加象棋总价)

  比较:12×3+15×415×4+12×3和复习题有什么不同?

  学生回答:复习题是两步计算的混合运算,这两题是三步计算的混合运算。

  小结:像这样含有三步运算的混合运算怎样计算呢?这就是我们今天要一起来研究的内容。(板书课题)不含括号的四则混合运算

  三、探索算法

  1、根据:12×3+15×415×4+12×3

  思考讨论:这两个算式,先算什么?再算什么,为什么?

  尝试:学生独立试做,再指名由学生板演。

  (根据单价×数量=总价,让学生明确:要用象棋的单价乘象棋的数量等于象棋的总价,围棋的单价乘围棋的数量等于围棋的总价;分别算出两种棋的总价加起来就是一共要付的钱,通过让学生有意识的与分步计算反复对比,明白这也是这道算式的计算顺序。)

  方法一:12×3+15×4方法二:12×3+15×4

  =36+15×4=36+60

  =36+60=96(元)

  =96(元)

  (包括分步算出两个积与同时算出两个积的情况,如有运算顺序错误的情况也一并板演)。

  (3)比较:两种计算方法,哪一种方法更简单?再利用第二种方法计算15×4+12×3。

  通过反复对比,引导学生自主探究,鼓励学生大胆推导出不含括号的三步混合运算顺序。

  汇报小结:(在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。汇报的同时引导学生了解:第一步脱式两个乘积可以同时计算出来。)

  独立计算,完成课本例题填空。

  2、出示“试一试”:150+120÷6×5`

  小组合作,讨论:算式中有哪些运算?在这里除和乘连在一起,应该先算什么,再算什么?

  思考并交流,说运算顺序,并标上运算顺序,独立计算,集体订正。

  3、小结:今天学的含有加、减、乘、除的三步混合运算的式子应该按什么顺序计算?

  指导学生阅读书上的结语:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

  四、巩固应用

  1、说说每组运算顺序有什么异同。

  ①40×2-15×540÷2+15÷5

  ②50÷5+8×550+5×8+5

  2.下面各题最后一步求的是什么?

  (1)28×2-45÷5①求积②求差③求商

  (2)84×3-98+2①求和②求差③求积

  (3)90+56÷2×3①求积②求和③求商

推荐访问:运算 教学设计 混合 教学设计:混合运算 菁选3篇 教学设计:混合运算1 混合运算一教学设计 混合运算教学设计教学方法 混合运算第一课时教学设计